Advanced Tech Report on Al
Squad Behvaiour

Alessandro Bufalino
19017120

University of the West of England

May 22, 2023

n this report, we explore an approach to cre-
I ate autonomous artificial intelligence (AI) agents
in the Unity game engine for use in a first-person
shooter (FPS) game. Finite state machines are used
dictate the behaviour of the agent based on its cur-
rent context.

1 Introduction

In this report, we discuss the growing importance of
developing responsive and dynamic Al agents to cre-
ate an immersive player experience in video games.
We demonstrate the effectiveness of using finite-state
machines for Al behaviour within a Unity (Technolo-
gies, 2023)based project, focusing on user-controlled
squads capable of performing actions such as taking
cover and defending positions to promote strategic
gameplay. The report details the design and imple-
mentation of this project, showcasing its potential in
enhancing the gaming experience.

Figure 1: Showing a friendly NPC taking cover behind a wall

2 Related Work

As games continue to grow in size and complexity,
there is an increasing need for systems of NPCs or Al
agents to fill the gaps within the game world. Several
Al methods that are used in games, include Finite-State
Machines, Behaviour Trees, or providing the agent with
private statistics about the player to aid the decision-
making process. Although these examples can be in-
tegrated into various genres, they all share a common
trait: deterministic Al implementation. Most games
lean towards deterministic behaviours because they
are "predictable, fast, and easy to implement, under-
stand, test, and debug" (Bourg and Seemann, 2004).
While nondeterministic approaches can offer a refresh-
ing and unpredictable gaming experience, they can
also introduce issues and bugs.

One example of a game that partially implements its
Al using a nondeterministic approach is Hello Neigh-
bour (Dynamic-Pixels, 2017). In this game, the AI
adjusts its patrol routes and sets traps based on the
player’s previous actions and locations. While this con-
cept is designed to keep the player engaged by encour-
aging them to find new strategies, it often results in
the game becoming nearly unplayable due to conflicts
between puzzle-solving and Al patrolling. As reported
by Kunzelman (2017), "I had solved the puzzle, and
the Al kept getting in my way, forcing me to restart".
This issue could have been mitigated by employing a
fully deterministic Al approach, which allows for sim-
ple checks that prevent the Al from interfering with
the player’s progress.

On the other hand, AAA game development aims to
simulate complex environments with engaging, realis-
tic, and believable NPC behaviour. Traditional scripted
behaviours, like Finite State Machines and Behaviour



Advanced Tech Report on Al Squad Behvaiour

Trees, might not meet modern consumers’ expectations
for realism and unpredictability (Llargues Asensio et
al., 2014). This emphasizes the need for advanced Al
systems to enhance player immersion. Techniques like
reinforcement learning, procedural content generation,
and neural networks are explored in modern games.
Developers should consider these methods or complex
FSMs to achieve desired NPC behaviour realism and
unpredictability.

For this project, a deterministic method was cho-
sen to ensure that the player can trust the agent to
follow orders consistently. The Finite State Machine
method was selected for its ease of implementation
and scalability.

3 Method

3.1 User Interface

The goal of the Ul implementation was to ensure that it
did not interfere with the gameplay, meaning it would
have minimal impact on the player’s objectives at any
given point. For example, if the game were to use a ra-
dial menu, it would not only obstruct the player’s view
of the target but also require the player to stop firing
to select an option, which could result in frustrating
scenarios (Nelson, 2021).

In this implementation, the player can bring up a
side action menu (Figure 3) when at least one of the Al
agents is selected. The agents can be selected using the
mouse scroll wheel (Figure 4) or by clicking on them
with the mouse. The implementation of this feature is
made possible by using the new input system (Figure
2) introduced in Unity, which simplifies the addition
of modifiers (such as left Shift + right mouse button)
and keeps the code compartmentalized thanks to its
individual function calls.

TrFFFF T

Figure 2: Unity input system, showing the setup for each of
the agent selection methods.

To interact with the Al, the player will need to use the
number keys to decide on the action that the selected
Al should take while the action menu is open. Some
choices in the menu are dynamic, depending on the
state of the currently selected agents.

* The "Hold Fire" action is a toggle, which means
that when selecting multiple different Al agents,
they might have different values simultaneously.
In such cases, the majority value will be shown in
the Action Menu.

* The ability button will disappear when more than
one Al agent is selected, as different abilities neces-
sitate different scenarios, and activating an ability
at the wrong time could lead to unexpected out-
comes in terms of gameplay.

: Find Cover
: Hold Fire

Use Ability

3:

4: Into Formation
5: Defend this Point
6:

Patrol This Point

7: Advance To Flag

Figure 3: Action Menu being deployed, and showing the cur-
rently selected agent to be holding fire and not shoot-

ing.

Page 2 of 5



Advanced Tech Report on Al Squad Behvaiour

Another addition to the UI is the Status Menu, as
shown in Figure 4. This menu was implemented not
only to display the currently selected agent, but also to
provide information about their health and distance,
giving the player context about the selected agent’s
situation. The menu also includes an icon that changes
based on the agent’s current state.

State: BCLI
Ability: GRANADIER

Name: 8483
Distance: 12,43135

State: FORM |

Ability: GRANADIER
Name: 9649

Distance: 3.607326

State: FORM |

Ability: GRANADIER
Name: 5596
Distance: 9.610272

State: USE ABILITY

Ability: MEDIC
Name: 4851
Distance: 7.799284

Figure 4: Status Menu showing the 4th agent being selected

and the different icons indicating different types of
1

states.

There are times when the Status Menu is insufficient,
and additional context is necessary. In such cases, a
quick pop-up has been added to alert the player about
certain events involving the agents. This system works
with a queue, ensuring that even if multiple messages
come in, they are displayed neatly. Messages can range
from the death of an agent to the resurrection of one,
and for quicker recognizability, the colour changes
depending on the message, as shown in Figure 5.

273 has susiained heavy damage and
"]

Figure 5: Pop-up showing a message on the current state of
the friendly agents of the player.

3.2 Squad Behaviour
3.2.1 Agent’s States

Each squad member has their own StateManager script,
which manages the state of the object and the variables

14
15

17
18

7

1
2

required for interaction with the world. This script
also holds references to each of the possible states the
agent can be in, with each state having its own specific
behaviours and actions.

private agentBaseState []
statesList new agentBaseState
[17]
{
new
new

TmDead () ,

TmFindCover (),
TmGoToCover (),
TmIdleWaiting (),
TmbehindCoverFrontFight (),
TmbehindCoverFrontIdle (),
TmInFormationFight (),
TmInFormationIdle (),
TmPatrollingAroundPoint (),
TmUseAbility (),
TmbehindCoverLateralActive ()

new
new
new
new
new
new
new
new
new
new TmbehindCoverLaterallIdle(),
TmGoToForcedCover (),
TmAdvance (),
TmDefendPoint (),

TmMedic (),

TmGranedier ()

new
new
new
new
new

};

Each state inherits from an abstract class, this is done
as the base class won'’t be instantiated it will only be
used to implement the different versions of the states.
All states contain 3 main functions.

public class TmbehindCoverFrontFight
agentBaseState
{
public override void OnUpdate (
agentStateManager agent) {} //
called every update
public override void OnExit(
agentStateManager agent){} //
called when the state is exited
public override void EnterState(
agentStateManager agent) {} //
called when the state is first
entered

}

On top of the 3 main functions, in the BaseState class,
there are Utility functions, these are functions that are
used from multiple states so instead of clogging up
each BaseState variation, they can easily be called from
the override class script. One of the main examples
for this implementation was the need to calculate the
Euclidean distance (1/(z1 — 22)% + (y1 — y2)% = d) of
the agent object to the closest enemy to set the right
alert value.

public bool RayCasterPoint ()
public bool RayCasterPlayer ()

Page 3 of 5



ENOV]

= OO0 00N ONU

[EE—

Advanced Tech Report on Al Squad Behvaiour

public bool RayCasterEnemyList ()
public List<GameObject>
CheckForEnemiesAround ()

public bool ReachedDestination ()
public void LookAt ()

public void ShootAt ()

public Quaternion GenRandomRot ()
public void GoToPoint ()

public float TimerCheck ()

public void SmoothRotateTowards
O

3.2.2 Finding Cover

Finding the right cover for the agent to take was a
key part for the squad overall to work as efficiently as
possible. There are 3 ways that the agent can decide
its cover position (Figure 6):

* Force Cover: This allows the player to manually
set the cover for each agent. After selecting an
agent, the player toggles Cover mode on, which
enables them to see all available cover spots and
direct the agent where to go.

* Find Cover (Alerted): When an agent is instructed
to find cover, it performs an Enemy check. If more
than one enemy is detected, the agent searches
for cover relative to the current enemy’s position.
Each potential cover position within range con-
ducts a RayCast from its location towards each
enemy. If the RayCast is blocked before reach-
ing the enemy, the cover position is considered
valid. The second check determines if the agent
can shoot at the enemy from outside the cover. If
both RayCasts are successful, the agent is directed
to a valid position behind the cover.

* Find Cover (Not Alerted): This process is similar to
the one above, but the RayCast is directed towards
the player instead of the enemies. This results in
cover positions that surround the player.

—_—

Non Alerted

Figure 6: Simple Overview example using the Ucover of the
different possible positions in cover, valid points of
cover shown in green. Blue — Enemy // White —
Player // Red - agent.

There are two types of cover positions available:

* Lateral Cover: The agent to shoot at the enemy
has to leave cover from the side, this only happens
in the UCover.

* Front Cover: The agent has to crouch and stand
up to shoot the Enemy. This is found in both the
UCover and the Basic Cover.

When the "Find Cover" state is activated, the agent
attempts to spread out as much as possible. In the
current project, each coverObject has six cover posi-
tions. Once a position is detected, the script checks if
there is already an agent stationed in any of the other
positions of that coverObject. If so, it attempts to find
a new coverObject. If none are available, it iterates
again without the spreading out feature. If no cover is
found in any case, the agent returns to the player in
the formation state.

4 Evaluation

4.1 Finite-State Machine
tion

Implementa-

The finite-state machine proved to be a suitable ap-
proach for implementing Al behaviour. It allowed for
relatively simple design and implementation while pro-
viding a solid foundation for creating responsive and
adaptive Al agents.

4.2 Scalability and Adaptability

In terms of scalability, the finite-state machine (FSM)
offers the ability to add states seamlessly, with the
primary challenge being the tracking and management
of each state transition. As the number of states and

Page 4 of 5



Advanced Tech Report on Al Squad Behvaiour

transitions increases, maintaining a clear and efficient
FSM can become more complex and time-consuming.

4.3 Future Work

In the future, work could focus on implementing more
intricate decision capabilities such as behaviour trees,
this would give the Al more autonomous control over
its own state. Furthermore, improved decision-making
can help mitigate any potential issues of overly deter-
ministic behaviours.

5 Conclusion

In conclusion, this report presents a method for imple-
menting a responsive Al system in Unity using finite
state machines. The system empowers players to com-
mand troops while trusting agents to make decisions
autonomously. Combined with a tailored UI system,
this approach can be applied to various games to im-
prove the player experience.

Bibliography

Bourg, David M and Glenn Seemann (2004). Al for
game developers. "O'Reilly Media, Inc."

Dynamic-Pixels (2017). Hello Neighbor. URL: https:
//store.steampowered. com/app/521890/Hello_
Neighbor/.

Kunzelman, Cameron (2017). The Awkward Hello
Neighbor Is in Conflict with Itself. URL: https://www.
pastemagazine . com/ games / hello - neighbor /
hello-neighbor-review/.

Llargues Asensio, Joan Marc et al. (2014). “Artificial
Intelligence approaches for the generation and as-
sessment of believable human-like behaviour in vir-
tual characters”. In: Expert Systems with Applica-
tions 41.16, pp. 7281-7290. 1ssN: 0957-4174. por:
https://doi.org/10.1016/j.eswa.2014.05.004.
URL: https://www.sciencedirect.com/science/
article/pii/S0957417414002759.

Nelson, William (2021). Best practices for designing
an effective user interface. URL: https : / / wuw .
gamesindustry . biz / best - practices - for -
designing-an-effective-video-game-ui.

Technologies, Unity (2023). Unity Game Engine. URL:
https://unity.com/.

Page 5 of 5



