Advanced Tech Report on Mesh

Destruction

Alessandro Bufalino
19017120

University of the West of England

May 22, 2023

his technical report presents a potential
T method for implementing a destructible wall
system in the Unity game engine, specifically de-
signed for shooting games. The system utilizes a
combination of the marching squares algorithm to
construct the wall mesh, and Voronoi and convex
hull algorithms to generate debris resulting from
wall destruction.

1 Introduction

The gaming industry has seen remarkable advance-
ments recently, resulting in more interactive and im-
mersive experiences, with a key aspect being mesh de-
structibility. Unity (Unity Technologies, 2023), a pop-
ular game engine, is known for its versatility, ease of
use, and accessible mesh formation components, mak-
ing it ideal for this project. The project is inspired by
the destruction method in Rainbow Six Siege (Ubisoft,
2015).

In this technical report, we introduce a method for
implementing a destructible wall system in Unity, tai-
lored for shooting games. The system combines algo-
rithms such as marching squares (Foley et al., 1996)
for wall mesh construction, Voronoi (Aurenhammer,
1991) and convex hull (Barber, Dobkin, and Huhdan-
paa, 1996) algorithms for debris generation from the
damaged wall and ways the designers can tailor this
implementation to its desired level. The report aims to
provide a comprehensive understanding of the method,
its implementation, underlying algorithms, and rele-
vant optimizations and challenges.

Figure 1: Showing the wall after it has been shot by the player
multiple times.



Advanced Tech Report on Mesh Destruction

2 Related Work

Destructible objects are common features in many mod-
ern games, providing users with intractability in levels
that were previously impossible due to expensive oper-
ations. This section reviews previous studies related to
mesh destruction and games that have released vari-
ants of such technology.

The most common method for destructible objects
in games involves pre-fracturing and model switching
of an object. This method uses modelling software
to create an undamaged version of the object and a
fractured version using built-in plugins found in various
modelling software, such as the cell fracture option in
Blender (Blender Foundation, 2002). When the object
in the game is interacted with, the undamaged object
is swapped with the fractured variant. This approach
saves the computational cost of calculating a new mesh
at runtime and is useful when multiple objects need
to be destroyed at once, such as in dungeon crawler
games like Minecraft Dungeons (Mojang Studios and
Double Eleven, 2020).

On the other hand, recent studies have explored real-
time mesh destruction techniques for use in games. For
instance, Zhang et al. (2022) proposed a method for
real-time mesh cutting and fracturing based on Voronoi
diagrams. Their approach demonstrated the poten-
tial for creating dynamic destructible environments.
Another study by Parker and O’Brien (2009) focused
on the corotational tetrahedral finite element (CTFE)
method for real-time fracture and deformation. CTFE
is a computationally efficient numerical technique used
for simulating deformable objects by discretizing them
into tetrahedral elements and separating global rota-
tions from local deformations to simplify calculations.

Additionally, a previous work that substantially im-
pacted the functionality and original idea for this im-
plementation was Rainbow Six Siege (Ubisoft, 2015),
with its destructible walls that can be destroyed in real-
time and in an online environment. Rainbow Six is a
tactical FPS game that allows players to create small
holes in designated walls to gain a tactical advantage
over the enemy player as shown in figure 2. This abil-
ity to shape the map to suit team strategies creates an
endless loop of possible tactics (LHeureux, 2016).

9 ENEMIES REMAINING

1"... i
ib (1

3 & »
@z s

Figure 2: Bullet penetration system in Rainbow Six Siege.
Source: Rainbow Six Wiki, 2023

3 Method

3.1 Designer section
An essential implementation aspect was enabling the
level designer to adjust the destructible wall’s settings

based on diverse needs. The wall characteristics in-
clude:

Distance

Of Frag Elimination

) Elim Timer

Figure 3: Showing the different parameters the designer can
change to make the wall abide the current context.

1. Wall position and size: The designer can drag
the guiding corners to set the wall to the desired
size and shape. The corners can also be set in ir-
regular positions to form more interesting shapes,
as shown in Figure 4.

2. Distance: The distance between the two faces of
the walls.

3. Resolution of Destruction: The number of overall
vertices that a wall will have. The more resolution
a wall has, the more performance heavy it will be,
but will also have a more realistic look.

4. Voronoi Division: Different materials when bro-
ken have different behaviours. The Voronoi num-
ber dictates how many pieces the broken-off piece
will break into.

5. Energy Loss Multiplier: Determines the loss of
energy of the bullet after it has gone through the
wall. denoted as a percentage, the higher it is the
more fragile the wall will be.

Page 2 of 6



Advanced Tech Report on Mesh Destruction

6. Impact strength: Using the animator graph pro- Curve [~ ]
vided by unity, the designer is able to graph the
damage to the impact done by the bullet to each
vertex with respect to the distance from the point
of impact, as shown in Figure 5. The graph is
unique to each weapon, and is stored in the player
script and passed with the function call for the
damage to the wall.

Figure 5: Graph showing the Damage (y-axis) to the vertices
based on the distance (x-axis) of the vertex to the
impact point.

2. The updated vertices and weights are passed
through marching squares algorithm to create the
hole contours from the “bullet”. If a vertex weight
falls below a threshold, it forms a hole. The algo-
rithm divides the lattice into squares and gener-
ates triangles based on each square vertex’s status
(active or not). A lerping mechanic is included
for a more realistic appearance, making triangles

) ) converge towards heavier vertices. The wall’s over-
After setting varla]?les, thf_’ ‘Creat.eMSQPlane class all shape is formed from the combined squares’
generates 4 plane objects, divided into 2 groups for outComes.

each wall side. Each group has an inner and outer side- 3. The flood fill (O’Callaghan and Mark, 1984) algo-
facing plane to handle collisions from all directions. rithm is applied next to identify regions not con-
nected to anchor points (wall edge vertices). The
algorithm uses a recursive function that iterates
until the current point fails to meet the minimum
3.2 Mesh Destruction welght for an “active vertex, complet}n.g the‘ re-
cursion. The returned list holds a specific region.
If it doesn’t include anchor vertices, the region is

Figure 4: Showing a bending wall due to the vertices place-
ments following the 4 guiding corners.

Once one of the wall faces are shot by the player, a floating, and a new set of algorithms is executed.
sequence of algorithms will run to draw the new face
of the wall. 3.1 To achieve the desired fragmentation count

specified by the designer, the Voronoi algo-
rithm is used to divide a plane into regions
based on the proximity of a set of points. The
algorithm randomly selects a given number
of vertices and marks them as seed points.
It then iterates through all the points, deter-
mining which seed point is the closest. Once
all the points have been iterated on, the func-
tion returns a list containing a list of vertices
k that represent the subdivided regions.
F=— (1) 3.2 Each subdivided region is processed by a fi-

1. Each of the vertices has a weight, when the shoot
lands on the created plane the vertices closer to
the point of impact will have their weight reduced
by an amount specified by the impact strength
graph, similar to the inverse square law.

Page 3 of 6



Advanced Tech Report on Mesh Destruction

nal function that creates the fragmented wall
mesh. This function utilizes the Iterative Con-
vex Hull algorithm, which calculates the con-
vex hull of a set of points in 3D space. The
convex hull is the smallest shape that can con-
tain all the points, in this case, it will contain
all the floating vertices.

The algorithm works by:

3.2.1 A non-visited list of vertices is initialized
with all vertices.

3.2.2 Four random vertices from the non-
visited list create the first polygon itera-
tion.

3.2.3 The algorithm iterates through the re-
maining non-visited vertices. If a ver-
tex is inside the current polygon, it’s dis-
carded. If outside, a new polygon itera-
tion is drawn.

3.2.4 Faces pointing towards the vertex are
deleted and redrawn, including the new
vertex in the polygon.

3.2.5 The algorithm runs until the non-visited
list is empty or a performance cap is
reached. The final triangulation is re-
turned as an ordered list of Unity-type
Vector3.

3.3 The list which contains the vertices is then
sent to a function which will create a mesh
and finally spawn the object.

Figure 6: Image showing the fragment of a wall falling without
using Voronoi subdivision.

Figure 7: Image showing the many fragments created from
the wall because of the use of Voronoi subdivision.

Page 4 of 6



Advanced Tech Report on Mesh Destruction

4. Lastly, to simulate a bullet passing through the
wall, a new raycast is created (see Figure 8) with
the same direction and position. This raycast
should hit the opposite wall face, and the same
algorithms will be applied. The independence of
the wall sides allows for more realistic, non-linear
shooting patterns. The new raycast has reduced
power, simulating energy loss, which can be set
by the designer.

Figure 8: Yellow raycast showing the projectile from the player.
Green raycast is the relayed raycast from the wall
with lower power.

To destroy the fragmented parts of the wall, the
Designer can decide whether the fragment shrinks in
size, and then after a set size, disappears or the item
just fall through the floor after the first collision with
another object. The designer can also decide how long
of a time the fragments should wait until they start to
disappear.

4 Evaluation

4.1 Performance and Efficiency

The destructible wall exhibits adequate processing
times with the occasional stutter depending on the size
of the vertices set by the designer. This is because the
entire mesh is reconstructed every time it gets shoots,
which could prove inefficient when some parts are left
untouched.

On the other hand, to mitigate the total processing
load to successfully run all the algorithms that were

listed above in one frame, different methods were used
to lighten up the number of processes the script would
take to calculate the new mesh:

* As previously mentioned, each face of the wall is
made up of an outer and inner portion. When
one of the planes is changed due to the marching
square algorithm as a result of the player shooting
the wall, instead of re-running all the algorithms
for the other plane, the unaffected planes will
copy their mesh.

* Chunk system: To eliminate needless checking of
different points in the mesh when using the march-
ing square algorithm, a chunk system has been
added to reduce the number of checked vertices.
This works by first checking in which quadrant
the shoot has landed and added all its vertices
to a list, and then checking all the immediately
adjacent quadrants. This means that if the player
were to shoot the bottom of the plane, the top row
of vertices would not be checked, cutting the time
spent on this algorithm in half on average (see
Figure 9).

Figure 9: Green points showing the Top Right and Bottom Left
vertex of that quadrant. The Cyan points showing
the added vertices to the list for performance gains.

LL operation

tALL operation

Figure 10: Showing the difference of time taken between the
old system and the new system.

4.2 Flexibility and scalability

The system demonstrated flexibility in adapting to dif-
ferent game scenarios and environments, as it can be

Page 5 of 6



Advanced Tech Report on Mesh Destruction

easily integrated into any kind of map using its flexi-
ble corner (see figure 4) to create any shape and be
oriented in any rotation wanted. Furthermore, the
necessary processing can also be scaled thanks to the
resolution variable to accommodate lower-power ma-
chines.

4.3 Future Work

Future work could include using Unity’s compute
shader to offload processing to the GPU for better
performance and employing the alpha shape Delau-
nay triangulation algorithm (Edelsbrunner and Miicke,
1994) for more accurate debris contours, resulting in
a tighter and more complex boundary around shot-off
shapes (see figure 11).

Figure 11: Showing the difference from expected versus actual
outcome.

5 Conclusion

In conclusion, this report introduces a method for a
destructible wall system in Unity, inspired by Rainbow
Six Siege. Combining multiple algorithms, it creates re-
alistic, dynamic destructible environments, enhancing
player immersion. Future work can focus on optimiza-
tion and additional features.

Bibliography

Aurenhammer, Franz (1991). “Voronoi diagrams: A
survey of a fundamental geometric data structure”.
In: ACM Computing Surveys (CSUR) 23.3, pp. 345-
405.

Barber, C. Bradford, David P. Dobkin, and Hannu Huh-
danpaa (1996). “The Quickhull Algorithm for Con-
vex Hulls”. In: ACM Transactions on Mathematical
Software (TOMS) 22.4, pp. 469-483.

Blender Foundation (2002). Blender. URL: https://
www.blender.org/.

Edelsbrunner, Herbert and Ernst P Miicke (1994).
“Three-dimensional alpha shapes”. In: ACM Transac-
tions on Graphics (TOG) 13.1, pp. 43-72.

Foley, James D. et al. (1996). Computer Graphics: Prin-
ciples and Practice. 2nd ed. Addison-Wesley Profes-
sional.

L'Heureux, Julien (2016). The Art of Destruction in
’rainbow six: Siege’. URL: https://gdcvault.com/
play/1023003/The-Art-of-Destruction-in.

Mojang Studios and Double Eleven (2020). Minecraft
Dungeons. [Video Game]. URL: https : / / www .
minecraft.net/en-us/about-dungeons.

O’Callaghan, L. J. and D. M. Mark (1984). “The Seed
Fill Algorithm: A Seed Fill Algorithm for Filling Re-
gions on Raster Devices”. In: IEEE Computer Graphics
and Applications 4.8, pp. 56-65.

Parker, Eric and James O’Brien (Aug. 2009). “Real-time
deformation and fracture in a game environment”.
In: pp. 165-175. URL: https://www.minecraft.
net/en-us/about-dungeons.

Rainbow Six Wiki (2023). Bullet Penetration. URL:
https://rainbowsix.fandom.com/wiki/Bullet_
Penetration.

Thomas, Rachel and Wenshu Zhang (2022). “Real-
time fracturing in video games”. In: Multimedia Tools
and Applications 82.3, 4709-4734. por1: 10.1007/
511042-022-13049-x.

Ubisoft (2015). Tom Clancy’s Rainbow Six Siege. Video
game. URL: https://www.ubisoft.com/en-us/
game/rainbow-six/siege.

Unity Technologies (2023). Unity Game Engine. https:
//unity.com/.

Page 6 of 6



