Advanced Tech Report on Simu-
lation Based Game

Alessandro Bufalino
19017120

University of the West of England

May 22, 2023

his report describes the development of an au-
T tonomous civilization simulation game featur-
ing a procedurally generated map, resource gather-
ing, Al agents, and a day cycle system. Algorithms
such as Perlin noise, Voronoi, and cellular automata
are employed to create a dynamic and engaging
gameplay experience. Additionally, the game incor-
porates a graphing system that enables players to
visualize data relationships.

1 Introduction

Simulation games provide an immersive experience
for players to observe complex system growth, such
as cities and civilizations. This report presents a novel
simulation game built on Unity (Unity Technologies,
2023) that uses algorithms such as Perlin noise (Perlin,
1985) for the map generation and cellular automata
for natural vegetation growth (Conway, 1970). The
game also features a context-aware decision-making
system and a graphing system for data visualization.

Figure 1: Screenshot taken of the civilization from the project.

2 Related Work

In this section, we review the existing literature and
projects related to the simulation of the evolution and
growth of civilizations, focusing on decision-making by
artificial intelligence agents using the current state of
the game as context.

Al decision-making has been a crucial component
of strategy games, where Al systems often manage re-
sources, build structures, and control units. Games like
Civilization (Firaxis Games, 2016 ) and Age of Empires
(Ensemble Studios, 1997) feature Al opponents that
make decisions based on the current state of the game
and, most importantly, the player’s current state or ac-
tions. The Al needs to dynamically adjust its difficulty
level, especially at lower levels, to avoid overwhelming
the player.

There are different types of implementation to use
to get the Al to make decisions based on the current



Advanced Tech Report on Simulation Based Game

context. Long (2007) explores a couple of these ap-
proaches:

e Hierarchical Task Network (HTN): An Al tech-
nique that breaks down complex tasks into
smaller, manageable subtasks, creating a hierar-
chy that simplifies decision-making and planning
for agents in a game environment. Notably used in
the game F.E.A.R (Monolith Productions, 2005).

* Goal-Oriented Action Planning (GOAP): An Al
technique that allows agents to make context-
sensitive decisions by choosing a series of actions
to achieve a specific goal. Middle-earth: Shadow
of Mordor (Monolith Productions, 2014) uses this
method to create dynamic and adaptive enemy
behaviours.

Fairclough et al. (2001) highlights Al techniques in
game genres like strategy games. They note two Al
applications: strategic and individual. Strategic Al is
harder due to player adaptability, while individual Al
enables units to follow orders. The challenge lies in Al
acting independently, such as when a unit is attacked.

3 Method

3.1 map generation

3.1.1 Tile class

In this project the world where the player plays in is
fully procedural generated and to achieve this firstly a
Tile class is needed to store the data of the map. The
class contains the following data (see Figure: 2):

* tileType: An enum type that describes the current
state of the specific tile. The state dictates if things
can grow on this tile and what can grow on it or if
the tile has currently a building on top, meaning
new buildings can’t be placed there.

* busy and tileObject: Saves the resource that is
available in that tile, so the agent can access it
when looking for resources.

* The next four Vectors dictate the place of the tile in
respect to their world location, this is used when
the user clicks so the specific tile clicked on can
be fetched.

* The ‘coord‘ and ‘oneDCoord‘ variables represent
the 2D coordinate of a tile in a list of array and
the 1D index of the same tile in a different array
used for data gathering, respectively.

Tile
TileType tileType;

busy;
GameDbject tileObject;

noiseVal;

BotRight

Vector3(];

Vector2Int coord
oneDcoord;

Vector2Int();

GRASS = B
HILL,
SNOW,
WATER,
NULL,
BLOCKED,
PATH,
ENTRANCE

Figure 2: Showing the variables held by each tile in the 2D
grid that makes up the map.

3.1.2 Perlin Noise

Perlin noise is used to generate believable, random
maps by assigning weight values to each tile. Its nat-
ural appearance leads to terrain features resembling
real landscapes. By setting weight thresholds, differ-
ent terrain tile types are created, producing realistic
terrains (see Figure 3).

Page 2 of 6



AU~ WDN =

® 3

Advanced Tech Report on Simulation Based Game

Figure 3: Showing the Perlin noise generation with the tiles
set for the map.

3.2 Entities
3.2.1 Data

In the game, all entities inherit from an abstract class
called ‘Entity’. This class contains a string called ‘GUID",
which stands for Globally Unique Identifier, a 128-bit
value used to uniquely identify objects. Depending on
the type of entity, either a building or an NPC, each
entity is stored in a dictionary where the key is the
GUID and the value is the class holding the entity’s
data. This approach allows for a fast lookup table for
each entity’s data.

public abstract class Entity
{
public string guid;
public Entity ()
{
guid = System.Guid.NewGuid ()
.ToString () ;
}
¥

3.2.2 Buildings

To improve efficiency and expandability, the project
uses Unity’s scriptable object data type to store build-
ing statistics (Figure 4). This allows for a lightweight,
reusable, and easily configurable data assets. The
stored data include:

* Type: Enum denoting building type for Ul

* Center Offset: Offset for centering building on tile.
* Name: Building name.

* Size: Number of occupied tiles.

* Entrances: Tiles tagged as entrances for NPCs.
 Tile Range: Resource detection range.

* Keep Up costs WSFS: The number of resources

needed per turn to keep the building healthy, the
WSEFS Denotes:

0 Wood
1 Stone
2 Food
3 Sand

Start Cost WSFS: the needed cost to place such
building.

Allowed Types: The allowed types of tiles this
building can be placed in, for example, 0 and 1
would equal to this building being only able to be
placed in the grass or hill-type tile

Building: this is the prefab object of the building.
Max workers: The maximum amount of people
that can be in that building

What Resource Looking For: If this building were
a buildings that needed to send the agent to for-
age for resources this array containing the integer
that would be converted to the enum type of the
necessary resource type to look for.

0 Stone
1 Food
2 Wood

¢ Bank Amount: The amount of each of the re-

sources this building is going to add onto the com-
munal maximum resource holding.

¢ Poissant Radius: Used for the Al to know what

places are safe to generate another building.

* Hourly Production WSFS: amount of each resource

generated per hour.

Page 3 of 6



Advanced Tech Report on Simulation Based Game

Element 6

Figure 4: Showing the data inside the scriptable object for the
house building.

3.2.3 NPCs/Agents

Unlike the buildings, the NPCs have unique attributes
apart from the GUID, such as their names, which help
identify them on the map. For instance, when a player
clicks on a building to see the workers inside, with
their names displayed (see Figure 5).

Euilding ty e
COUINCIL

Euilding Health:
10D

list of worlkers
=elbastian
Wy att
S rey

L irke=

el

draww resourncess

Figure 5: Showing the UI pop-up when clicking on a building
and showing its workers.

Another distinct feature of the NPC object is its ability
to communicate with the agent class. The agent class
serves as a visual representation of the NPC in the game
world (see Figure 6), appearing when the NPC is given
a destination to travel to. When the NPC is inside a
building, the agent object is destroyed.

Figure 6: Showing agents moving around the map.

The destinations are typically provided by the build-
ings, which act as states. Each building object contains
a prefab, and within that prefab, there is a unique
class for each building type that defines how the agent
should behave. In this sense, the agent exhibits finite
state machine-like behaviour, with the states being the
buildings themselves. This design approach allows for
greater flexibility when adding new building types or
modifying existing ones.

Additionally, the agents use A* pathfinding (Hart,
Nilsson, and Raphael, 1968) to navigate the tile-based
map efficiently. This algorithm ensures that they can
effectively traverse the world, even as the map lay-
out changes from new buildings being placed, or new
obstacles are encountered.

Page 4 of 6



Advanced Tech Report on Simulation Based Game

3.3 Simulation

At the end of each day, the game manager decides
which building to construct next on the map to facilitate
the growth of the civilization. However, due to the
maintenance cost of each building, the game will only
proceed with construction when there is a genuine
need for new buildings to avoid wasting resources.

The user has access to a menu that allows them to
change the Game Manager’s prioritization if they wish,
as shown in Figure 7.

Figure 7: Shows the menu available to the player where they
can change values to have the Al focus on specific
resources.

If the game detects that there will be unemployed
NPCs in the next turn, a two-step function is executed:

1 Resource Importance: A formula determines the
importance of a resource every turn, which can
be broken down into three parts. The lower the
importance number, the higher the need for that
resource.

The first part calculates the percentage difference
from the maximum allowed amount for a resource.
In theory, a resource with a lower number should
be flagged as being in higher demand.
currentAmountOf Resource / maximum-
BankAmount

The second part considers the spending amount
of each resource and estimates how long the
resource will last if the player continues to spend
at the same rate.

turnResourceSpending / currentAmountOfRe-
source

Finally, the modifier stage adjusts resource impor-
tance based on the values set by the player in the
menu (see Figure 7). Certain resources may be
multiplied, increasing their importance number
and making them less crucial. Alternatively, the
user can instruct the Game Manager to focus pri-
marily on one aspect of the equation by using the
division organizer slider, also found in the menu
(see Figure 8).

Figure 8: Showing the whole formula in code.

2 Once the appropriate resource is chosen, the cor-
rect building needs to be placed to continue pro-
ducing the resource in demand. To ensure proper
placement without overlapping other buildings
and leaving enough space for agents to roam, a
variation of the Poisson-disc sampling algorithm
(Bridson, 2007) with varying radii is used. The
algorithm first considers all currently placed build-
ings and then attempts to place new buildings
without overlapping the radii of each building,
which is stored in the data within the scriptable
object section (see Figure 9).

Figure 9: Showing possible spots to build new buildings in
green.

3.4 Graphing

The game features a graph tool that shows correlations
between two data points. This allows players to ob-
serve relationships between aspects of the city, such as
NPC population growth and food expenses. The tool
provides insights for informed decision-making to en-
sure sustainable civilization development (see Figure:
10).

Time

Figure 10: Showing the graph available to the player.

Page 5 of 6



Advanced Tech Report on Simulation Based Game

4 Evaluation

4.1 Al Agent Behaviour and Decision-
making

The finite state machine-like behaviour allows for a
wide range of agent actions, leading to diverse game-
play experiences. However, further improvements
could be made to enhance the game-manager Al
decision-making and adaptability in response to chang-
ing game conditions and context.

4.2 Scalability and Modularity

The game’s design is modular and scalable, making it
easy to introduce new features and expand upon exist-
ing ones thanks to the use of scriptable objects and a
finite state machine model, therefore future work could
focus on adding new types of Al agents, resources, or
building types to further diversify the implementation.

5 Conclusion

In conclusion, the autonomous civilization simulation
game demonstrates the successful integration of ad-
vanced algorithms, Al agent behaviour, and data visu-
alization. The modular and scalable design provides
a solid foundation for future enhancements, such as
refining agent decision-making, introducing new game
elements, and improving the graphing system’s capa-
bilities. Overall, the project showcases the potential for
engaging and immersive simulation experiences driven
by innovative game design and technology.

Bibliography

Bridson, Robert (2007). “Fast Poisson disk sampling
in arbitrary dimensions”. In: ACM Transactions on
Graphics (TOG) 26.3, pp. 1-9.

Conway, John H. (1970). “The Game of Life”. In: Sci-
entific American 223.4, pp. 120-123. URL: https:
//wuw.scientificamerican.com/article/the-
game-of-1life/.

Fairclough, Chris et al. (2001). “Research Directions
for Al in Computer Games”. In: Proceedings of the
2001 Workshop on Al and Interactive Entertainment.
Trinity College Dublin. Dublin. URL: http://www.
tara.tcd.ie/handle/2262/13098.

Games, Firaxis (2016). Sid Meier’s Civilization® VI.
URL: https://store . steampowered . com/ app /
289070/Sid_Meiers_Civilization_VI/.

Hart, Peter E., Nils J. Nilsson, and Bertram Raphael
(1968). “A Formal Basis for the Heuristic Determina-
tion of Minimum Cost Paths”. In: IEEE Transactions
on Systems Science and Cybernetics 4.2, pp. 100-107.

Long, Edmund (2007). “Enhanced NPC Behaviour
using Goal Oriented Action Planning”. MSc the-
sis. Dundee, UK: University of Abertay Dundee.
URL: https : / / citeseerx . ist . psu . edu /
document 7 repid = repl & type = pdf & doi =
472acfbf6bl9ala3faaec7bf61e7£018b471272c1.

Perlin, Ken (1985). “An Image Synthesizer”. In: Pro-
ceedings of the 12th Annual Conference on Computer
Graphics and Interactive Techniques. ACM, pp. 287—
296.

Productions, Monolith (2005). F.E.A.R. URL: https:
//store.steampowered.com/app/21090/FEAR/.

— (2014). Middle-earth: Shadow of Mordor. URL: http:
//www.tara.tcd.ie/handle/2262/13098.

Studios, Ensemble (1997). Age of Empires. URL: https:
/ / store . steampowered . com / developer /
AgeOfEmpires.

Unity Technologies (2023). Unity Game Engine. URL:
https://unity.com/.

Page 6 of 6



